

Outline

MiniBooNE motivation

The experiment

- Oscillations
 - Analysis
 - Results
- · Summary and outlook

Joe Grange Miami 2011

December 2011

- Neutrinos oscillate! One of the few concrete BSM results. Implications:
 - ightharpoonup oscillation shape strongly supports massive v's
 - v Hamiltonian eigenstates are NOT flavor eigenstates
 - Lepton flavor is not conserved $(v_e \rightarrow v_\mu, v_\mu \rightarrow v_\tau, v_e \rightarrow v_\tau)$
- Embarrassingly brief formalism: ν born of type α propagates according to

$$\psi(x) = \sum_{k} U_{\alpha k} \times e^{ip_k x - iE_k t}$$

PMNS mixing matrix - describes mixing between v flavor state α , mass state k

Joe Grange

Miami 2011

December 2011

 \blacktriangleright Under the approximations of only two ν masses and

$$t \approx x$$
 $p_k \approx E - \frac{m_k^2}{2E}$

after travelling a distance L the ν born as α has survival probability (detected as α) of

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

and an oscillation probability of

$$P(\nu_{\alpha \to \beta} \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Joe Grange

Miami 2011

December 2011

"Disappearance"

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

"Appearance"
$$P(\nu_{\alpha} \mathop{\to}_{\alpha \neq \beta} \nu_{\beta}) = \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Physics: θ osc. amplitude; Δm^2 osc. frequency

Joe Grange

Miami 2011

December 2011

"Disappearance"

$$P(
u_{lpha}
ightarrow
u_{lpha}) = 1 - \sin^2 2\theta \sin^2 \left(rac{\Delta m^2 L}{4E}
ight)$$

"Appearance"
$$P(\nu_{\alpha} \mathop{\to}\limits_{\alpha \neq \beta} \nu_{\beta}) = \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Physics: θ osc. amplitude; Δm^2 osc. frequency

Experiment: E ν energy, L distance from ν creation to detector

Joe Grange Miami 2011

December 2011

- Large Electron-Positron collider data: exactly 3 active, light ν flavors
- We also know of 3 ν 's: ν_e , ν_μ , ν_τ
- 3 v's require two independent sets of Δm² mixing

Joe Grange Miami 2011

December 2011

This is observed and confirmed!

Joe Grange Miami 2011

December 2011

However...

Evidence for high Δm^2 mixing from LSND experiment

some hints from cosmology and reactor data as well

Confirmation with SNO, Kamland data

LSND

Joe Grange Miami 2011

December 2011

- LSND: Liquid Scintillator Neutrino Detector (Los Alamos, 1990s)
 - Find Evidence of \overline{v}_e excess in \overline{v}_u beam

Enter MiniBooNE! Mini Booster Neutrino Experiment

Joe Grange

Miami 2011

December 2011

MiniBooNE has same L/E as LSND but different systematic errors. Quick comparison:

LSND

MiniBooNE

- Neutrino beam from accelerator (decay-at-rest, average E_v ~ 35 MeV)
- ν_{μ} too low E to make μ or π
- Proton beam too low E to make K

- Neutrino beam from accelerator (decay-in-flight, average E_v ~ 800 MeV)
- New backgrounds: v_{μ} CCQE and NC π^0 mis-id for oscillation search
- New backgrounds: intrinsic v_e from K decay (0.5% of p make K)

Booster Neutrino Beam

Joe Grange Miami 2011 December 2011

8.9 GeV/c momentum protons extracted from Booster, steered toward a beryllium target

Booster Neutrino Beam

Joe Grange Miami 2011 December 2011

Magnetic horn with reversible polarity focuses either neutrino or anti-neutrino parent mesons

("neutrino" vs "anti-neutrino" mode)

Detector

Joe Grange Miami 2011 December 2011

- 6.1m radius Cherenkov detector houses 800 tons of undoped mineral oil, 1520 PMTs in two regions
 - Inner signal region
 - Outer veto region (35 cm thick)

Nucl. Instr. Meth. A599, 28 (2009)

Neutrino Flux

Joe Grange Miami 2011

December 2011

- Flux prediction based exclusively on external data - no in situ tuning
- Dedicated π production data taken by HARP collaboration, measured 8.9 GeV/c

$$p + \mathrm{Be} \to \pi^{\pm} + X$$

on MiniBooNE replica target

HARP collaboration, Eur. Phys. J. C **52** 29 (2007)

Neutrino Flux

Joe Grange Miami 2011 December 2011

MiniBooNE collaboration, Phys. Rev. D **79**, 072002 (2009)

Combining HARP data with detailed Geant4 simulation gives the flux prediction at the MiniBooNE detector for positive and negative focusing horn polarities

A BooNE of Data

Joe Grange Miami 2011 December 2011

- Stable running since 2002
- POT received from Booster:
 - \triangleright 6.4 × 10²⁰ in ν mode
 - ▶ 8.6 × 10^{20} in $\overline{\nu}$ mode (analyzed), ~30% more data coming!

Particle ID Basics

Joe Grange Miami 2011 December 2011

PID based almost exclusively on timing and topology of PMT hits

Particle ID Analysis

light

Joe Grange Miami 2011

December 2011

t, x, y, z

- Form charge and timing PDFs, fit for track parameters under 3 hypotheses
 - I. Electron
 - 2. Muon
 - 3. Superposition of two γ 's from π^0 decay
- Apply energy-dependent cuts on $L(e/\mu)$, $L(e/\pi)$ and π^0 mass to search for single electron events
- ▶ Plot events passing cuts as a function of reconstructed v_e energy and fit for two-v oscillations

Joe Grange

Miami 2011

December 2011

Predicted Backgrounds 475 - 1250 MeV

p+Be

Signal interaction v_e CCQE: v_e + n -> e^- + p , observe single e^-

Intrinsic $\nu_{\rm e}$ from μ originate from same π as ν_{μ} CCQE sample

Measuring ν_{μ} CCQE channel constrains intrinsic ν_{e} from π -> μ -> e decay

Joe Grange

Miami 2011

December 2011

475 - 1250 MeV intrinsic mis-id ν_{e} from $\mu^{\text{\pm}}$

Signal interaction v_e CCQE: $v_e + n -> e^- + p$, observe single e^-

Intrinsic $\nu_{\rm e}$ from μ originate from same π as ν_{μ} CCQE sample

Measuring ν_{μ} CCQE channel constrains intrinsic ν_{e} from π -> μ -> e decay

Joe Grange

Miami 2011

December 2011

At high energy, ν_{μ} flux is dominated by K production Measuring ν_{μ} CCQE at high energy constrains kaon production, and thus intrinsic ν_{e} from K

Also use external measurements from HARP

Sanford-Wang fits to world K+/K0 data

Joe Grange Miami 2011

December 2011

Measured in MiniBooNE

Joe Grange Miami 2011 December 2011

About 80% of our NC π^0 events come from resonant Δ production

Constrain $\Delta \rightarrow N\gamma$ by measuring the resonant NC π^0 rate, apply known branching fraction to N, including nuclear corrections

Joe Grange

Miami 2011

December 2011

Pileup at high radius and low E

Fit dirt-enhanced sample to extract dirt event rate with 10% uncertainty

Joe Grange Miami 2011 December 2011

$v_{\mu} \rightarrow v_{e}$ Appearance Data!

Joe Grange

Miami 2011

December 2011

Surprise!

Neither perfect agreement with background nor LSND-like signal!

$v_u \rightarrow v_e$ Appearance Data!

Joe Grange

Miami 2011

December 2011

Below 475 MeV

Excess is 128 ± 20 (stat) ± 39 (syst) events (3σ excess) Shape inconsistent with 2ν oscillation interpretation of LSND

$v_u \rightarrow v_e$ Appearance Data!

Joe Grange

Miami 2011

December 2011

Excellent agreement with background predictions

Region of highest sensitivity to an LSND-like 2ν mixing hypothesis, use it to exclude that model assuming CP conservation

Observe 408 events, expect 386 ± 20 (stat) ± 30 (syst)

$v_{\mu} \rightarrow v_{e}$ Appearance Data!

Joe Grange Miami 2011

December 2011

 Neutrino-mode appearance analysis excludes LSND-like oscillations at 90% CL

Low E Next Step: MicroBooNE

Joe Grange Miami 2011

December 2011

- Low E excess either unexpected background or new physics must be explained! Ambiguous between e, γ-like events
- MicroBooNE: next-generation liquid argon TPC with excellent e/γ resolution

Construction expected soon

Updates to Anti-Neutrino Analysis: Flux Revisited

Joe Grange Miami 2011 December 2011

Phys. Rev. D 79, 072002 (2009)

- Significant neutrino content in anti-neutrino beam
- Detector not magnetized; cannot separate contribution based on μ charge

Updates to Anti-Neutrino Analysis: Flux Revisited

Joe Grange

Miami 2011

December 2011

- First measurement of neutrino contribution to antineutrino beam with non-magnetized detector
- 3 independent, complementary

measurements

- μ^+/μ^- angular distribution
- π^- capture
- $\mu^{-} \text{ capture}$ Demonstration of techniques = 0.4for other non-magnetized detectors looking for **E**
 - NOvA, T2K, LBNE, etc.

SciBooNE

Joe Grange Miami 2011 December 2011

SciBooNE: a fine-grained tracking detector 50m downstream of proton target in same ν beam

SciBooNE provides powerful check of upstream beam content

Updates to Anti-Neutrino Analysis: Flux Revisited

Joe Grange

Miami 2011

December 2011

Tracking power of SciBooNE allows sensitivity to ν parent

Phys. Rev. D84: 012009 (2011)

rates through track multiplicity

- More visible tracks -> higher energy v's
 - one track: mostly μ-only
 - two: μ + hadron
 - three: μ + 2 hadrons
- Extracted K⁺ rate: 0.85 ± 0.11
 - ▶ applied to MiniBooNE \overline{v} analysis

$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Appearance Data!

Joe Grange

Miami 2011

December 2011

 38.6 ± 18.6 excess events

Entire energy region

 57.7 ± 28.5 excess events

$\overline{\overline{v}}_{\mu} \rightarrow \overline{\overline{v}}_{e}$ Appearance Data!

Joe Grange Miami 2011

December 2011

Data favors 2v oscillation fit over null hypothesis at 91.1% CL

▶ (Fit above 475 MeV)

$\overline{2010 \, \overline{v}_e}$ Appearance (5.66e20 POT)

Joe Grange

Miami 2011

December 2011

- "LSND is right?!?"
- E_{v} < 475 MeV:
 - \triangleright 1.3 σ excess (by counting)
- $E_{v} > 475 \text{ MeV}$:
 - ► 1.5σ excess (by counting)
 - Fit to 2v osc. prefers BF over null at 99.4%
- Fluctuations happen!
 - ambiguous which direction which data set fluctuated, of course

Phys. Rev. Lett. 105: 1818001 (2010)

Both (Current) Data Sets

Joe Grange

Miami 2011

December 2011

 v_e, \overline{v}_e appearance comparison

combined v_e , \overline{v}_e analysis underway

(CP violating model)

Both Data Sets

Joe Grange

Miami 2011

December 2011

▶ Model independent comparison to LSND: L/E

Joint MiniBooNE-SciBooNE ν_{μ} Disappearance Analysis

Joe Grange

Miami 2011

December 2011

- By comparing rate and shape information in ν_μ CC interactions between the two detectors, set limits for ν_μ disappearance
 - world's strongest limit at $10 < \Delta m^2 \text{ (eV}^2\text{)} < 30$
- Constrains $v_{\mu} \rightarrow v_{e}$ oscillations as well as other, more exotic models
 - extra dimensions, CRT
- Forthcoming $\overline{\nu}_{\mu}$ disappearance analysis

45

arxiv: 1106.5685

Joint MiniBooNE-SciBooNE ν_{μ} Disappearance Analysis

Joe Grange Miami 2011

December 2011

• Common ν beam and ν nuclear target, so many systematic errors cancel! Majority of remaining is MiniBooNE detector error

► New BooNE proposal: MiniBooNE-like near detector for more sensitive osc. measurements (LOI: 0910.2698)

"BooNE"

Joe Grange Miami 2011

December 2011

sensitivity with lyr running atL = 200m (current MB L ~540m)

Conclusions

Joe Grange Miami 2011

December 2011

- $\nu_{\rm e}$ appearance analysis exposes unexpected low energy excess mostly incompatible with oscillations
 - MicroBooNE to test details soon
- $\overline{v}_{\rm e}$ appearance data is consistent with LSND, but will need more data to definitively discriminate
 - more data on the way, but becoming dominated by syst. errors
 - "BooNE" near detector would help immensely
- Simultaneous v_e , \bar{v}_e fit to CP violating model underway
-) Joint MiniBooNE-SciBooNE ν_{μ} disappearance results sets strong limits
 - ightharpoonup corresponding $\overline{\nu}_{\mu}$ analysis underway

Thanks!

Joe Grange Miami 2011 December 2011

Thanks for your attention!

BACKUP

v_e Appearance Details

Joe Grange Miami 2011

December 2011

- χ^2 probability of 93% compatible with no-osc.
- 99% compatible with best fit
 - $\sin^2(2\theta) = 10^{-3}, \Delta m^2 = 4 \text{ eV}^2$
- ▶ Under joint analysis with LSND data and errors, 2v osc. hyp. for LSND ruled out at 98% CL

Phys. Rev. Lett. 102: 101802 (2009)

$\overline{2010 \, \overline{v}_e}$ Appearance (5.66e20 POT)

Joe Grange

Miami 2011

December 2011

- $E_{v} < 475 \text{ MeV}$:
 - 1.3σ excess (by counting)
- $E_{v} > 475 \text{ MeV}$:
 - \triangleright 1.5 σ excess (by counting)
 - Fit to 2v osc. prefers BF over null at 99.4%

Fluctuations happen!

 ambiguous which direction which data set fluctuated, of course

Phys. Rev. Lett. 105: 1818001 (2010)

Gallium Anomaly

Joe Grange Miami 2011

December 2011

- GALLEX and SAGE radiochemical experiments combined for 4 calibration runs with MCi source
 - ► counted 71 Ga + $v_e \rightarrow ^{71}$ Ge + e^{-1}
 - ▶ all 4 runs observed event deficit, with improved flux prediction $R = (obs/pred) = 0.86 \pm 0.06 (I\sigma)$

PRD **83**: 073006 (2011)

 ν_e disappearance?

GALLEX

μ⁺/μ⁻ Angular Fits

Joe Grange Miami 2011

December 2011

- Results indicate the ν_{μ} flux is over-predicted by ~30%
- Fit also performed in bins of reconstructed energy; consistent results indicate flux spectrum shape is well modeled

$\mathbf{E}_{\overline{\nu}}^{\mathbf{QE}}(\mathrm{MeV})$	$lpha_ u$	$lpha_{ar{ u}}$
< 600	0.65 ± 0.22	0.98 ± 0.18
600 - 900	0.61 ± 0.20	1.05 ± 0.19
> 900	0.64 ± 0.20	1.18 ± 0.21
Inclusive	0.65 ± 0.23	1.00 ± 0.22 ₅₅

$\overline{\overline{\nu}_{u}} \rightarrow \overline{\overline{\nu}_{e}}$ Future Sensitivity

Joe Grange

Miami 2011

December 2011

- (outdated) future \overline{v}_e sensitivity
 - to give feel for how errors scale with POT

Physics Goals 2

Joe Grange

December 2011

Pre-MiniBooNE σ's

Miami 2011

- Cross sections at MiniBooNE energy sparsely measured
- \blacktriangleright No sub-GeV $\overline{\nu}_{\mu}$ cross sections
 - ▶ Vital for future **∠** studies

Recent results suggest these cross sections are more interesting than we thought! (later)

μ⁻ capture

Joe Grange Miami 2011 December 2011

By requiring $(\mu\text{-only}/\mu\text{+e})^{\text{data}} = (\mu\text{-only}/\mu\text{+e})^{\text{MC}}$ and normalization to agree in the $\mu\text{+e}$ sample we can calculate a ν_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$

$$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$

Predicted neutrino content in the µ+e sample, for example

μ- capture

Joe Grange Miami 2011 December 2011

By requiring $(\mu\text{-only}/\mu\text{+e})^{\text{data}} = (\mu\text{-only}/\mu\text{+e})^{\text{MC}}$ and normalization to agree in the $\mu\text{+e}$ sample we can calculate a ν_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$

$$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$

Results:

$$\alpha_{\nu} = 0.86 \pm 0.14$$

PRELIMINARY